Discovery and mechanism of a highly selective, antifungal acetyl CoA synthetase inhibitor

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Acetyl CoA synthetases (ACS) have emerged as drug targets for the treatment of cancer, metabolic diseases as well as fungal and parasitic infections. Although a variety of small molecule ACS inhibitors have been discovered, the systematic optimization of these molecules has been slowed by a lack of structural information regarding their mechanism of inhibition. Through a chemical genetic-based, synthetic lethal screen of the human fungal pathogen Cryptococcus neoformans, we identified an isoxazole-based ACS inhibitor with antifungal activity and exquisite selectivity for the C. neoformans Acs1 relative to human ACSS2 as well as other fungal ACSs. Xray crystallographic characterization of the isoxazole-CnAcs1 complex revealed that the isoxazole functions as an acetyl CoA mimic and occupies both the acetyl- and CoA-binding sites of CnAcs1. Consistent with this novel mode of inhibition, the isoxazoles display uncompetitive inhibition kinetics that are similar to antimalarial ACS inhibitors also proposed to target the CoA binding site. Consequently, these data provide structural and mechanistic insights into the remarkable selectivity of Acetyl CoA pocket-targeting ACS inhibitors. In addition, these data provide strong proof-of-principle that targeting fungal and parasitic ACSs for the development of novel anti-infectives can be achieved with high selectivity and, thereby, low host toxicity.

Article activity feed