What maintains variation in flower accessibility to pollinators in plant communities? A simulation study

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Flowers in natural plant communities come in many shapes. Flowers with restrictive morphologies are considered complex, because only a subset of pollinators are able to learn how to access their nectar and pollen. Other flowers are easily accessible to diverse pollinating insects, and are regarded as simple. How and why do the two types of flowers coexist in natural plant communities? We developed a spatially explicit evolutionary simulation framework to explore this question. We modeled the dynamics of two types of flowers (‘complex’ and ‘simple’) that differ in accessibility to their simulated pollinators and in food rewards. The flowers are visited by a population of pollinators, which initially possess heritable variation in their ability to learn to forage on the complex flowers. We manipulated the pollinators’ flying distances and the flowers’ overall density, spatial distribution, and starting proportion of simple flowers. We recorded the resulting dynamics of the two flower types in the community, and of the pollinators’ learning rates, over 100 generations. Results: Complex and simple flowers coexisted under all simulated conditions. The steady-state community always contained more simple flowers than complex ones. Complex flowers attained higher frequencies when flowers were highly aggregated than when flower aggregation was low. Long-distance fliers evolved higher learning abilities than short-distance fliers. Pollinator learning abilities, in turn, were positively correlated with the frequency of complex flowers. Conclusions: Frequencies of complex flowers vary among natural plant communities. Our model predicts that this variation is shaped by the plants’ spatial distribution as well as by the cognitive abilities of their pollinators. The model generates novel and testable hypotheses for understanding how diversity in flower shapes is maintained in natural plant communities.

Article activity feed