Mechanism of Quiescent Nanoplastic Formation from Semicrystalline Polymers

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Polymers are known to spontaneously produce micro (sizes 1μm - 5mm, MPL) and nanoplastics (10nm - 1μm, NPL), but the mechanisms by which environmentally-triggered Å-level random bond breaking events lead to the formation of these relatively large fragments are unclear. Significantly, ~70 % of commercial polymers are semicrystalline, with a morphology comprised of alternating crystalline and amorphous layers, each tens of nanometers thick. It is well-accepted that chain scission events accumulate in the amorphous phase. We show that this leads to mechanical failure of the semicrystalline morphology and the concurrent release of particulate NPL comprised of polydisperse stacks of lamellae even under quiescent conditions. Noncrystalline analogs, which do not have a well-defined microstructure, do not form NPL. While the amorphous phase of the semicrystalline NPL continues to degrade, crystal fragments do not and hence they temporally persist in the environment. These results stress the critical role of polymer microstructure and fracture mechanics on particulate NPL creation.

Article activity feed