Management and protection of soil resources using smart technologies to measure and predict erosion mechanism

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Soil is a critical natural resource, and accurate estimation of soil erosion is vital for the optimal management and development of soil resources. Soil erosion assessment is necessary for long-term conservation plans, but the process can be expensive and time-consuming over large areas. It is imperative to examine the impact of water-induced soil erosion on cultivated lands, as it can cause significant damage. This study evaluates the effectiveness of four data-driven approaches (biogeography-based optimization, earthworm optimization algorithm, symbiotic organisms search, and whale optimization algorithm) combined with artificial neural network models in estimating soil erosion. The examined criteria include 14 geographic and environmental criteria, and the data used in a ratio of 70 to 30 for training and testing operations. And its results were measured by AUC values. The evaluation of AUC accuracy indices revealed compelling results. Specifically, in the case of SOS-MLP, the highest AUC values were observed, reaching 0.9973 for test data and 0.9296 for train data. Conversely, for WOA-MLP, the AUC values obtained were slightly lower but still notable, registering at 0.9809 for test data and 0.959 for train data. These values were also calculated for BBO-MLP (0.999 and 0.9327) and EWA-MLP (0.9304 and 0.9296) in the training and testing phases, respectively. Results showed that all four methods could successfully evaluate erosion susceptibility according to AUC values greater than 0.92, especially the BBO-MLP with the highest AUC values. Therefore, the findings of this study have shown that the combined optimization algorithms and Machine Learning used in this research have a suitable ability to optimize the artificial neural network and are very useful for identifying areas sensitive to erosion.

Article activity feed