Depth-dependent anisotropy in the Earth’s inner core linked to chemical stratification

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Seismic anisotropy in the Earth’s inner core (IC), including the heterogeneous, depth-dependent anisotropy structure, is a well-documented yet poorly understood feature plausibly related to the alignment of iron alloy crystals. Here, we report the effect of silicon and carbon on the plastic deformation of hexagonal close-packed (hcp) iron using radial X-ray diffraction at pressures up to 128 GPa and temperatures up to 1100 K. Our results reveal a low compressional wave anisotropy (~2 %) in the Fe-Si-C alloy, consistent with the seismic anisotropy observed in the outer regions of the IC. These findings, together with the higher anisotropy exhibited by pure hcp-Fe, suggest that the depth-dependent elastic anisotropy of the IC may originate from chemical stratification, i.e., radial gradients in silicon and carbon concentrations, during crystallization.

Article activity feed