Genome wide association studies are enriched for interacting genes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background : With recent advances in single cell technology, high-throughput methods provide unique insight into disease mechanisms and more importantly, cell type origin. Here, we used multi-omics data to understand how genetic variants from genome-wide association studies influence development of disease. We show in principle how to use genetic algorithms with normal, matching pairs of single-nucleus RNA- and ATAC-seq, genome annotations, and protein-protein interaction data to describe the genes and cell types collectively and their contribution to increased risk. Results : We used genetic algorithms to measure fitness of gene-cell set proposals against a series of objective functions that capture data and annotations. The highest information objective function captured protein-protein interactions. We observed significantly greater fitness scores and subgraph sizes in foreground vs. matching sets of control variants. Furthermore, our model reliably identified known targets and ligand-receptor pairs, consistent with prior studies. Conclusions : Our findings suggested that application of genetic algorithms to association studies can generate a coherent cellular model of risk from a set of susceptibility variants. Further, we showed, using breast cancer as an example, that such variants have a greater number of physical interactions than expected due to chance.

Article activity feed