Adaptive Resetting for Informed Search Strategies and the Design of Non-equilibrium Steady-States
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Stochastic resetting, the procedure of stopping and re-initializing random processes, has recently emerged as a powerful tool for accelerating processes ranging from queuing systems to molecular simulations. However, its usefulness is severely limited by assuming that the resetting protocol is completely decoupled from the state and age of the process that is being reset. We present a general formulation for state- and time-dependent resetting of stochastic processes, which we call adaptive resetting. This allows us to predict, using a single set of trajectories without resetting and via a simple reweighing procedure, all key observables of processes with adaptive resetting. These include the first-passage time distribution, the propagator, and the steady-state. Our formulation enables efficient exploration of informed search strategies and facilitates the prediction and design of complex non-equilibrium steady states, eliminating the need for extensive brute-force sampling across different resetting protocols.