7aaRGD - a novel SPP1/integrin signaling-blocking peptide reverses immunosuppression and improves anti-PD-1 immunotherapy outcomes in experimental gliomas

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background Immune checkpoint inhibitors (ICIs) present clinical benefits in many cancer patients but invariably fail in glioblastoma (GBM), the most common and deadly primary brain tumor. The lack of ICIs efficacy in GBM is attributed to the accumulation of tumor-reprogrammed myeloid cells (GAMs) that create the “cold” immunosuppressive tumor microenvironment (TME), impeding the infiltration and activation of effector T cells. GBM-derived αvβ3/αvβ5-integrin ligands, including SPP1, were shown to mediate the emergence of GAMs. We hypothesized that a combination strategy aiming to block the reprogramming of GAMs using a developed 7aaRGD peptide that targets SPP1/integrin signaling might overcome resistance to ICIs and reinvigorate anti-tumor immunity. Methods Matrigel invasion assay was used to test the efficacy of 7aaRGD in glioma-microglia co-cultures. We determined the impact of 7aaRGD, administered as a monotherapy or combined with PD-1 blockade, on tumor growth, GAMs accumulation and phenotypes, arginase-1 levels and neovasculature in experimental gliomas. The effects of treatments on the tumor immune landscape were dissected using multiparameter flow cytometry, immunocytochemistry, cytokine profiling and RNA-seq analysis of sorted GAMs followed by CITE-seq based data deconvolution. Results 7aaRGD efficiently blocked microglia-dependent invasion of human and mouse glioma cells in vitro . Intratumorally delivered 7aaRGD alone did not reduce tumor growth in orthotopic gliomas but prevented the emergence of immunosuppressive GAMs and led to normalization of peritumoral blood vessels. Combining 7aaRGD with anti-PD-1 antibody resulted in reduced tumor growth, with an increase in the number of proliferating, interferon-ɣ producing CD8 + T cells and depletion of regulatory T cells. Transcriptomic profiles of myeloid cells were altered by the combined treatment, reflecting the restored “hot” inflammatory TME and boosted immunotherapy responses. Intratumoral administration of 7aaRGD similarly modified the phenotypes of GAMs in human U87MG gliomas in immunocompromised mice. Exploration of transcriptomic datasets revealed that high expression of integrin receptor coding genes in pre-treatment biopsies was associated with a poorer response to immune check-point blockade in patients with several types of cancers. Conclusions We demonstrate that combining the blockade of SPP1/integrin signaling with ICIs modifies innate immunity and reinvigorates adaptive antitumor responses, which paves the way to improve immunotherapy outcomes in GBM.

Article activity feed