Effect of Electroencephalography-based Motor Imagery Neurofeedback on Mu Suppression During Motor Attempt in Patients with Stroke

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Objective The primary aims of this study were to explore the neurophysiological effects of motor imagery neurofeedback using electroencephalography (EEG), specifically focusing on mu suppression during serial motor attempts and assessing its potential benefits in patients with subacute stroke. Methods A total of 15 patients with hemiplegia following subacute ischemic stroke were prospectively enrolled in this randomized cross-over study. This study comprised two experiments: neurofeedback and sham. Each experiment included four blocks: three blocks of resting, grasp, resting, and intervention, followed by one block of resting and grasp. During the resting sessions, the participants fixated on a white cross on a black background for 2 minutes without moving their upper extremities. In the grasp sessions, the participants were instructed to grasp and release their paretic hand at a frequency of about 1 Hz for 3 minutes while fixating on the same white cross. During the intervention sessions, neurofeedback involved presenting a punching image with the affected upper limb corresponding to the mu suppression induced by imagined movement, while the sham involved mu suppression of other randomly selected participants 3 minutes. EEG data were recorded during the experiment, and data from C3/C4 and P3/P4 were used for analyses to compare the degree of mu suppression between the neurofeedback and sham conditions. Results Significant mu suppression was observed in the bilateral motor and parietal cortices during the neurofeedback intervention compared with the sham condition across serial sessions (p < 0.001). Following neurofeedback, the real grasping sessions showed progressive strengthening of mu suppression in the ipsilesional motor cortex and bilateral parietal cortices compared to those following sham (p < 0.05), an effect not observed in the contralesional motor cortex. Conclusion Motor imagery neurofeedback significantly enhances mu suppression in the ipsilesional motor and bilateral parietal cortices during motor attempts in patients with subacute stroke. These findings suggest that motor imagery neurofeedback could serve as a promising adjunctive therapy to enhance motor-related cortical activity and support motor rehabilitation in patients with stroke.

Article activity feed