Within-session propulsion asymmetry changes have a limited effect on gait asymmetry post-stroke
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background. Biomechanical gait impairments, such as reduced paretic propulsion, are common post-stroke. Studies have used biofeedback to increase paretic propulsion and reduce propulsion asymmetry, but it is unclear if these changes impact overall gait asymmetry. There is an implicit assumption that reducing propulsion asymmetry will improve overall gait symmetry, as paretic propulsion has been related to numerous biomechanical impairments. However, no work has investigated the impact of reducing propulsion asymmetry on overall gait asymmetry. We aimed to understand how within-session changes in propulsion asymmetry affect overall gait asymmetry, operationalized as the combined gait asymmetry metric (CGAM). We hypothesized that decreasing propulsion asymmetry would reduce CGAM. Methods. Participants completed twenty minutes of biofeedback training designed to increase paretic propulsion. We calculated the change in propulsion asymmetry magnitude (Δ|PA|) and the change in CGAM (ΔCGAM) during biofeedback relative to baseline. Then, we fit a robust linear mixed-effects model with ΔCGAM as the outcome and a fixed effect for Δ|PA|. Results. We found a positive association between Δ|PA| and ΔCGAM (β = 2.6, p = 0.002). The average Δ|PA| was − 0.09, suggesting that, on average, we would expect a CGAM change of 0.2, which is 0.5% of the average baseline CGAM value. Conclusions. Reducing propulsive asymmetry using biofeedback is unlikely to produce substantial reductions in overall gait asymmetry, suggesting that biofeedback-based approaches to reduce propulsion asymmetry may need to be combined with other interventions to improve overall gait asymmetry. Clinical Trial Registration . NCT04411303.