Direct Heterogeneous Integration of Molybdenum Disulfide via Spin-on Molecular Chemistry

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), are emerging as key materials for next-generation electronics, addressing challenges in the miniaturization of silicon-based technologies. Despite progress in scaling-up 2D materials, integrating them into functional devices remains challenging, particularly in the context of three-dimensional integration. Here, we present a scalable method for growing high-quality mono- to few-layer MoS2 on large wafers using a spin-on precursor, molybdenum ethyl xanthate. This approach facilitates the formation of a metastable amorphous molybdenum trisulfide phase, which we can then be leveraged for direct heterogeneous integration. We thoroughly investigate the growth dynamics and associated versatile features using comprehensive characterization, reactive force-field molecular dynamics simulations, and Density Functional Theory. Our method allows precise control over film thickness, grain size, and defect density, yielding wafer-scale monolayer MoS2 with reliable optical properties comparable to as-exfoliated samples. Additionally, we achieve area-selective formation of MoS2 and the direct deposition of sub-5 nm high-k oxides using atomic layer deposition, without the need for seeding or surface functionalization. This process enables the fabrication of complex superlattice structures, top-gated FETs, and memristor devices, all from a single-source chemistry. Our findings highlight the versatility of spin-on metal xanthate chemistries for the synthesis and integration of transition metal dichalcogenides, paving the way for advanced nanoscale fabrication processes and enhancing the commercial viability of 2D materials in electronics.

Article activity feed