Direct Heterogeneous Integration of Molybdenum Disulfide via Spin-on Molecular Chemistry
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Two-dimensional (2D) semiconductors, such as molybdenum disulfide (MoS2), are emerging as key materials for next-generation electronics, addressing challenges in the miniaturization of silicon-based technologies. Despite progress in scaling-up 2D materials, integrating them into functional devices remains challenging, particularly in the context of three-dimensional integration. Here, we present a scalable method for growing high-quality mono- to few-layer MoS2 on large wafers using a spin-on precursor, molybdenum ethyl xanthate. This approach facilitates the formation of a metastable amorphous molybdenum trisulfide phase, which we can then be leveraged for direct heterogeneous integration. We thoroughly investigate the growth dynamics and associated versatile features using comprehensive characterization, reactive force-field molecular dynamics simulations, and Density Functional Theory. Our method allows precise control over film thickness, grain size, and defect density, yielding wafer-scale monolayer MoS2 with reliable optical properties comparable to as-exfoliated samples. Additionally, we achieve area-selective formation of MoS2 and the direct deposition of sub-5 nm high-k oxides using atomic layer deposition, without the need for seeding or surface functionalization. This process enables the fabrication of complex superlattice structures, top-gated FETs, and memristor devices, all from a single-source chemistry. Our findings highlight the versatility of spin-on metal xanthate chemistries for the synthesis and integration of transition metal dichalcogenides, paving the way for advanced nanoscale fabrication processes and enhancing the commercial viability of 2D materials in electronics.