Spatial single-cell atlas reveals regional variations in healthy and diseased human lung

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Integration of scRNA-seq data from millions of cells revealed a high diversity of cell types in the healthy and diseased human lung. In a large and complex organ, constantly exposed to external agents, it is crucial to understand the influence of lung tissue topography or external factors on gene expression variability within cell types. Here, we apply three spatial transcriptomics approaches, to: (i) localize the majority of lung cell types, including rare epithelial cells within the tissue topography, (ii) describe consistent anatomical and regional gene expression variability within and across cell types, and (iii) reveal distinct cellular neighborhoods in specific anatomical regions and examine gene expression variations in them. We thus provide a spatially resolved tissue reference atlas in three representative regions of the healthy human lung. We further demonstrate its utility by defining previously unknown imbalances of epithelial cell type compositions in chronic obstructive pulmonary disease lungs. Our topographic atlas enables a precise description of characteristic regional cellular responses upon experimental perturbations or during disease progression.

Article activity feed