Identifying individuals at clinical high risk for psychosis using a battery of tasks sensitive to symptom mechanisms
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The clinical high risk for psychosis (CHR-P) population is important for understanding disease progression and treatment; however, standard approaches to identifying CHR-P individuals are expensive and labor-intensive. Focusing on neurocognitive mechanisms that underlie individual psychosis symptoms (positive, negative, and disorganization) may improve screening and identification. The present study examines whether a behavioral task battery that assays symptom mechanisms can identify CHR-P individuals and predict risk severity. Participants ( N = 621) were recruited from clinics and the community as part of the Computerized Assessment of Psychosis Risk (CAPR) consortium study. Structured clinical interviews, a dimensional risk calculator, and behavioral tasks were administered. Clinical interviews identified the following groups: (a) CHR-P ( n = 273), (b) non-CHR-P individuals with limited psychosis like experiences (PLEs; n = 120), (c) participants with mental disorders and no PLEs (CLN; n = 82), and (d) healthy controls (HC; n = 146). Multinomial logistic regression indicated that the task battery differentiated groups ( p < .001), with utility for identifying CHR-P individuals (Sensitivity = .87, PPV = .51, NPV = .77), though with high false positives that varied based on comparison group (Specificity = .21-.43). Tasks also predicted psychosis risk calculator scores (Adjusted R 2 = .12), with the two unique predictors being positive symptom task variables associated with updating beliefs regarding environmental volatility. Overall, symptom mechanism tasks differentiated CHR-P individuals from control groups, suggesting their potential as novel screening tools. Using tasks to more efficiently identify CHR-P individuals (e.g., enrich samples), may lower barriers and identify individuals that may otherwise be missed.