Exploiting Potential Molecular Compounds for Treating Testicular Seminoma by Targeting Immune Related Genes
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background In cases of advanced seminoma, up to 30% of patients may manifest cisplatin resistance, necessitating aggressive salvage therapy, with a consequent 50% risk of mortality attributable to cancer. Nevertheless, beyond chemotherapy, no further therapeutic modalities have been implemented for these patients. Methods The study commenced with the identification of differentially expressed immune-related genes, which were subsequently subjected to clustering using WGCNA. Prognostic signature construction ensued through the execution of univariable Cox regression, lasso regression, and multivariable Cox regression analyses. To validate the prognostic signature, the TCGA-TGCT and GSE99420 cohorts were employed, with assessments conducted via PFS, C-index, DCA, and ROC analyses. Subsequent exploration of the immune landscape and potential immunotherapeutic applications was undertaken through Cibersort and TIDE analyses. Molecular docking and dynamics simulation techniques were then employed for screening potential molecular compounds. Validation of these findings was pursued through in vitro and vivo assays. Results CTLA4, SNX17, and TMX1 were selected to construct the signature. Patients in the high-risk group exhibited diminished progression-free survival rates. The AUC for predicting survival at 1, 3, and 5 years was 0.802, 0.899, and 0.943, respectively, surpassing those of other risk factors, such as lymphovascular invasion and T stage. The C-index for the risk score was 0.838. Decision curve analysis (DCA) suggests that incorporating lymphovascular invasion and the risk score yields the most favorable decision-making outcomes for patients. Moreover, individuals classified as high-risk may derive greater benefit from immunotherapy. Molecular compounds including Rutin, ICG-001, and Doxorubicin can selectively target CTLA4, SNX17, and TMX1, respectively, thereby inhibiting the proliferation and invasive capabilities of seminoma tumor cells in vitro and vivo. Conclusion The signature initially constructed based on immune-related genes shows promise for predicting outcomes and assessing the efficacy of immunotherapy in seminoma patients. Rutin, ICG-001, and Doxorubicin have demonstrated potential to target these signature genes and inhibit tumor cell viability.