Circulating extracellular vesicles regulate ELAVL1 by delivering miR-133a-3p which affecting NLRP3 mRNA stability inhibiting PANoptosome formation
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Background In the quest to elucidate novel therapeutic strategies for myocardial injury, recent investigations have underscored the pivotal roles played by circulating extracellular vesicles (EVs) in intercellular communication. Method EVs were extracted from individuals who had experienced AMI-EVs and those who were N-EVs. To assess the impact of circulating EVs on cardiomyocyte and endothelial cell proliferation, apoptosis, migration, and tube formation, a range of in vitro assays such as CCK8, EdU assays, flow cytometry, wound healing assays and angiogenesis assays were conducted. Differentially expressed miRNAs in EVs were validated using microarray analysis and real-time PCR. Through bioinformatics analysis, ELAVL1 was identified as a potential downstream target of miR-133a-3p. This finding was further confirmed by conducting dual-luciferase reporter assay and RNA co-immunoprecipitation experiments. To investigate the regulatory effects of circulating EVs from various sources on myocardial injury and PANoptosis, an animal model of ischemia-reperfusion-induced myocardial injury was established. Result Our findings revealed that circulating EVs effectively deliver miR-133a-3p to target cells, where it binds to ELAVL1, leading to a decrease in NLRP3 mRNA stability. This reduction in NLRP3 mRNA stability subsequently inhibits the assembly of the PANoptosome, a multi-protein complex implicated in PANoptosis. As a result, we observed a significant mitigation of PANoptosis in our myocardial injury models, demonstrating the protective role of miR-133a-3p against excessive cell death. Conclusion The present study underscores the regulatory role of circulating EV-delivered miR-133a-3p in modulating PANoptosis through ELAVL1-mediated NLRP3 mRNA stabilization. This mechanism represents a potential therapeutic target for attenuating myocardial injury by suppressing PANoptosis.