Shikimate pathway-Dependent Catabolism: enabling near-to-maximum production yield of aromatics

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Catabolism is a complex network of tightly regulated metabolic reactions that provides energy and carbon to fuel anabolism in all living organisms. Rewiring catabolism is essential for harnessing industrial biotechnology but remains a substantial metabolic engineering challenge due to its high genetic stability and tight regulation acquired through evolution. In this study, by combining metabolic modeling, rational engineering, and adaptive laboratory evolution, we fundamentally redesigned bacterial catabolism. We created a new-to-nature shikimate pathway-dependent catabolism (SDC) in the industrial bacterium Pseudomonas putida by reprogramming the shikimate pathway as the primary catabolic route instead of its native glycolytic one. SDC supports growth by supplying the glycerol catabolic end-product pyruvate, thereby enabling superior production of shikimate pathway-derived molecules. Through SDC, production of aromatics reached 89% of the pathway’s maximum theoretical yield, setting a new benchmark for their microbial synthesis. Our study successfully repurposed an anabolic pathway for catabolism, exemplifying the high metabolic plasticity of microbes and providing a bacterial chassis for the efficient production of fine and bulk chemicals.

Article activity feed