A Novel Feeder cell based on 4-1BBL and Membrane-bound IL-21/ IL-15 Induce Highly Expansion and Anti-tumor Effect of Natural Killer Cells

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background Natural killer (NK) cell immunotherapy is a promising approach for cancer treatment. However, its extensive clinical application was limited to the large-scale clinical-grade expansion of NK cells. In this study, we expanded NK cells from healthy donor’s peripheral blood mononuclear cells (PBMCs) using a newly designed K562 feeder cell line. Methods The feeder cells were generated by transducing K562 cells with lentiviral particles carrying 4-1BBL and mbIL-21/-15. NK cells were expanded from PBMCs with these genetically modified, frozen-thawed and irradiated K562 feeder cells in the presence of IL-2. The purity, quantity, and receptors expression of the expanding NK cells were dynamically monitored. Furthermore, their anti-tumor efficacy was evaluated both in vitro and in vivo following a two-week expansion period. Results The K562-4-1BBL-mbIL-21/-15 feeder cells induced highly-efficient NK cells expansion from PBMC (17902-fold) within two weeks. There was a notable upregulation in the expression of activating receptors including NKG2D, NKp30, NKp44, and NKp46 during the expansion process. Moreover, the expanded NK cells displayed enhanced cytotoxicity against a variety of hematological (K562, MOLM-13, OCI-AML-3, THP-1) and solid (Hep-G2, OVCAR3) cancer cell lines in vitro. In the humanized U937 xenograft mouse model, the NK cells extended the median survival time of the AML-bearing mice from 19.40 to 28.25 days. Conclusions We have successfully established a highly-efficient, cost-effective and rapid NK cell expansion platform from PBMC utilizing K562-4-1BBL-mbIL-21/-15 feeder cells, which also significantly improved the cytotoxicity both in vitro and in vivo, presenting a significant advancement in the field of NK cell-based immunotherapy.

Article activity feed