Comprehensive analysis identifies YKT6 as a potential prognostic and diagnostic biomarker in lung adenocarcinoma

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background Lung cancer is the most common cause of cancer-related death worldwide. The most prevalent histological subtype of lung cancer is lung adenocarcinoma (LUAD), with incidence rising each year. Treating LUAD remains a significant issue due to a lack of early diagnosis and poor therapy outcomes. YKT6 is a member of the SNARE protein family, whose clinical value and biological function in LUAD has yet to be established. Methods TCGA, HPA and UALCAN were used to analyze YKT6 mRNA and protein levels, the correlation between YKT6 expression and clinicopathological features and prognosis. YKT6 mRNA and protein expression were verified by qRT-PCR, immunohistochemistry (IHC) and tissue microarrays (TMA). Additionally, lung cancer cell lines were chosen for YKT6 silencing to explore the effects on cell proliferation and migration. The cBioPortal was used to select YKT6-related genes. Protein-protein interaction (PPI) network was created based on STRING database and hub genes were screened, with their expression levels and prognosis values in LUAD analyzed accordingly. YKT6-related genes were enriched by gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analyses. Results In LUAD, YKT6 was distinctly highly expressed with relation to clinical features of staging, smoking, lymph node metastasis, and TP53 mutation. Elevated YKT6 expression was linked to adverse prognosis, serving as an independent unfavorable prognostic factor. Moreover, YKT6 presented high diagnostic value in LUAD patients (AUC = 0.856). Experimental validation indicated that freshly collected LUAD tissues showed significantly high mRNA expression of YKT6. IHC and TMA verified increased YKT6 protein level in LUAD. Knockdown of YKT6 inhibited cell proliferation and promoted apoptosis, with mitigated capability of migration and invasion. The top ten hub genes screened by PPI network were highly expressed in LUAD, and significantly associated with poor prognosis. GO and KEGG analyses showed that YKT6-related genes were mainly involved in cell cycle. Conclusion Elevated YKT6 expression is related to poor prognosis of LUAD patients. YKT6 can serve as a novel biomarker for LUAD diagnosis and prognosis. Cell proliferation, migration and invasion was impaired with increased apoptosis upon YKT6 silencing in lung cancer cells. In summary, this study comprehensively uncovered that YKT6 could be identified as a potential prognostic and diagnostic biomarker in LUAD.

Article activity feed