Serum assisted PD-L1 aptamer screening for improving its stability

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Aptamers have shown potential for diagnosing clinical markers and targeted treatment of diseases. However, their limited stability and short half-life hinder their broader applications. Here, a real sample assisted capture-SELEX strategy is proposed to enhance the aptamer stability, using the selection of specific aptamer towards PD-L1 as an example. Through this developed selection strategy, the aptamer Apt-S1 with higher binding affinity and specificity towards PD-L1 was obtained as compared to the aptamer Apt-A2 which was screened by the traditional capture-SELEX strategy. Moreover, Apt-S1 exhibited a greater PD-L1 binding associated conformational change than Apt-A2, indicating its suitability as a biorecognition element. These findings highlight the potential of Apt-S1 in clinical applications requiring robust and specific targeting of PD-L1. Significantly, Apt-S1 exhibited a lower degradation rate in 10% diluted serum or pure human serum, under the physiological temperature and pH value, compared to Apt-A2. This observation suggested that Apt-S1 possesses higher stability and is more resistant to damage caused by the serum environmental factors, highlighting the superior stability of Apt-S1 over Apt-A2. Furthermore, defatted and deproteinized serum were used to investigate the potential reasons for the improved stability of Apt-S1. The results hinted that the pre-adaptation to nucleases present in serum during the selection process might have contributed to its higher stability. With its improved stability, higher affinity and specificity, Apt-S1 holds great potential for applications in PD-L1 assisted cancer diagnosis and treatment. Meanwhile, the results obtained in this work provide further evidence of the advantages of the real capture-SELEX strategy in improving aptamer stability compared to the traditional strategy.

Article activity feed