Anticancer potential of chalcones loaded on mesoporous silica nanoparticles

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

The difficulty in treating cancer has led to several studies on the development of systems that perform targeted drug delivery, with the aim of increasing the effectiveness of treatment and reducing adverse effects. In this study, a series of chalcones were tested for cytotoxic action on gastric adenocarcinoma cells (AGS) and breast cancer cells (MCF-7) using the MTT-tetrazolium method, and significant cytotoxicity was demonstrated for 3-hydroxychalcone (CHO). The synthesis of mesoporous silica nanoparticles (MSNs) and their surface modification with 3-aminopropyltriethoxysilane (APTES) were carried out, and 3-hydroxychalcone was then incorporated into these nanomaterials. Mesoporous silica nanoparticles were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), elemental analysis (CHN), scanning electron microscopy (SEM), transmission electron microscopy (TEM), zeta potential and nitrogen adsorption. In addition, in vitro release tests were carried out to verify the release profile of 3-hydroxychalcone from mesoporous silica samples. The results obtained showed that the mesoporous silica nanoparticles exhibited a gradual and prolonged release profile. In the cytotoxicity test with silica samples incorporated with 3-hydroxychalcone, significant cytotoxic activity was observed against AGS and MCF-7 cells, with the MSN-CHO sample exhibiting a better cytotoxic effect (IC 50 of 12.93 to 22.30 μM) than 3-hydroxychalcone (IC 50 of 47.58 to 47.97 μM). The results showed that the nanoparticles positively influenced the interaction of 3-hydroxychalcone with tumor cells. This is therefore an unprecedented study on the incorporation of 3-hydroxychalcone into mesoporous silica nanoparticles and its promising results in terms of cytotoxic activity against breast and gastric cancer cells.

Article activity feed