Metagenomic analysis of colonic tissue and stool microbiome in patients with colorectal cancer in a South Asian population

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background The gut microbiome is thought to play an important role in the development of colorectal cancer (CRC). However, as the gut microbiome varies widely based on diet, we sought to investigate the gut microbiome changes in patients with CRC in a South Asian population. Methods The gut microbiome was assessed by 16s metagenomic sequencing targeting the V4 hypervariable region of the bacterial 16S rRNA in stool samples (n = 112) and colonic tissue (n = 36) in 112 individuals. The cohort comprised of individuals with CRC (n = 24), premalignant lesions (n = 10), healthy individuals (n = 50) and in those with diabetes (n = 28). Results Overall, the relative abundances of genus Fusobacterium (p < 0.001), Acinetobacter (p < 0.001), Escherichia-Shigella (p < 0.05) were significantly higher in gut tissue, while Romboutsia (p < 0.01) and Prevotella (p < 0.05) were significantly higher in stool samples. Bacteroides and Fusobacterium were the most abundant genera found in stool samples in patients with CRC. Patients with pre-malignant lesions had significantly high abundances of Christensenellaceae, Enterobacteriaceae, Mollicutes and Ruminococcaceae (p < 0.001) compared to patients with CRC, and healthy individuals. Romboutsia was significantly more abundant (p < 0.01) in stool samples in healthy individuals compared to those with CRC and diabetes. Conclusion Despite marked differences in the Sri Lankan diet compared to the typical Western diet, Bacteroides and Fusobacterium species were the most abundant in those with CRC, with Prevotella species, being most abundant in many individuals. We believe these results pave the way for possible dietary interventions for prevention of CRC in the South Asian population.

Article activity feed