Accuracy of recent intraocular lens power calculation methods in post-myopic LASIK eyes

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This retrospective study compared postoperative prediction errors of recent formulas using standard- or total keratometry (K or TK) for intraocular lens (IOL) power calculation in post-myopic LASIK patients. It included 56 eyes of 56 patients who underwent uncomplicated cataract surgery, with at least 1-month follow-up at Keio University Hospital in Tokyo or Hayashi Eye Hospital in Yokohama, Japan. Prediction errors, absolute errors, and percentage of eyes with prediction errors within ± 0.25 D, ± 0.50 D, and ± 1.00 D were calculated using nine formulas: Barrett True-K, Barrett True-K TK, Haigis-L, Haigis TK, Pearl-DGS, Hoffer QST, Hoffer QST PK, EVO K, and EVO PK. Statistical comparisons utilized Friedman test, Conover’s all-pairs post-hoc, Cochran’s Q, and McNemar post-hoc testing. Root-Mean-Square Error (RMSE) was compared with Welch’s test and paired t-test post-hoc testing. Barrett True-K TK had the lowest median predicted refractive error (-0.01). EVO PK had the smallest median absolute error (0.20). EVO PK had the highest percentage of eyes within ± 0.25 D of the predicted value (58.9%), significantly better than Haigis-L (p = 0.047). EVO PK had the lowest mean RMSE value (0.499). The EVO PK formula yielded the most accurate IOL power calculation in post-myopic LASIK eyes, with TK/PK values enhancing accuracy.

Article activity feed