Investigation of Kinetics, Reaction Mechanisms, Thermodynamics, and Synergetic Effects in Co-Pyrolysis of Wood Sawdust and Linear Low-Density Polyethylene using the Thermogravimetric Approach
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
This study focused on investigating thermal degradation behaviors, kinetics, reaction mechanisms, synergistic effects, and thermodynamic parameters of wood sawdust (WSD), linear low-density polyethylene (LLDPE), and their blends (LW1:3, LW1:1, and LW3:1) during co-pyrolysis in a thermogravimetric analyzer (TGA). Thermal behavior exhibited a LW1:3 blend (25 wt.% LLDPE) showing significant mass loss at lower temperatures (150 to 300°C) compared to the individual feedstocks, such as 150 to 400°C and 300 to 520°C for WSD and LLDPE, respectively. The iso-conversional methods (KAS, FWO, and FM) were used to determine the kinetic parameters (Ea and A), and the activation energy drop was highest for the LW1:3 blend. According to the master plots, the third-order reaction (O3), nucleation (P2/3), and diffusional model (D4) were the predominant reaction mechanisms for the co-pyrolysis of the LW1:3, LW1:1, and LW3:1 blend, respectively. The thermodynamic parameters demonstrate that a small amount of plastic addition into WSD can improve the reactivity of the blend, shorten the reaction time, and cause less energy-intensive reactions. The values of ΔH, ΔG, and ΔS also confirmed the co-pyrolysis process’s spontaneity and endothermic nature. The Fourier transforms infrared spectrometer (FTIR) spectra of raw feedstock, blends, and their biochar revealed some of the peaks were shifted, the intensity was reduced, and disappearance can happen when the temperature was increased. Using the experimental and theoretical/predicted activation energies, the parity chart illustrates the synergistic effects of co-pyrolysis of different blends, and the LW1:3 blend has a favorable synergistic impact. These results could be helpful in process optimization and designing an effective reactor system for co-pyrolysis.