Parkinson’s disease-associated shifts between DNA methylation and DNA hydroxymethylation in human brain in PD-related genes, including PARK19 (DNAJC6) and PTPRN2 (IA-2β)

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background The majority of Parkinson’s disease (PD) cases are due to a complex interaction between aging, genetics, and environmental factors; epigenetic mechanisms are thought to act as important mediators of these risk factors. While multiple studies to date have explored the role of DNA modifications in PD, few focus on 5-hydroxymethylcytosine (5hmC). Because 5hmC occurs at its highest levels in the brain and is thought to be particularly important in the central nervous system, particularly in the response to neurotoxicants, it is important to explore the potential role of 5hmC in PD. This study expands on our previously published epigenome-wide association study (EWAS) performed on DNA isolated from neuron-enriched nuclei from human postmortem parietal cortex from the Banner Sun Health Research Institute Brain Bank. The study aimed to identify paired changes in 5hmC and 5mC in PD in enriched neuronal nuclei isolated from PD post-mortem parietal cortex and age- and sex-matched controls. We performed oxidative bisulfite (oxBS) conversion and paired it with our previously published bisulfite (BS)-based EWAS on the same samples to identify cytosines with significant shifts between these two related epigenetic marks. Interaction differentially modified cytosines (iDMCs) were identified using our recently published mixed-effects model for co-analyzing β mC and β hmC data. Results We identified 1,030 iDMCs with paired changes in 5mC and 5hmC (FDR < 0.05) that map to 695 genes, including PARK19 (DNAJC6), a familial PD gene, and PTPRN2 (IA-2), which has been previously implicated in PD in both epigenetic and mechanistic studies. The majority of iDMC-containing genes have not previously been implicated in PD and were not identified in our previous BS-based EWAS. Conclusions These data potentially link epigenetic regulation of the PARK19 and PTPRN2 loci in the pathogenesis of idiopathic PD. In addition, iDMC-containing genes have known functions in synaptic formation and function, cell cycle and senescence, neuroinflammation, and epigenetic regulation. These data suggest that there are significant shifts between 5mC and 5hmC associated with PD in genes relevant to PD pathogenesis that are not captured by analyzing BS-based data alone or by analyzing each mark as a distinct dataset.

Article activity feed