Transplantation of Derivative Retinal Organoids from Chemically Induced Pluripotent Stem Cells Restored Visual Function
Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
As an emerging type of pluripotent stem cells, chemically induced pluripotent stem cells (CiPSCs) avoid the risks of genomic disintegration by exogenous DNAs from viruses or plasmids, providing a safer stem cell source. To verify CiPSCs’ capacity to differentiate into retinal organoids (ROs), we induced CiPSCs from mouse embryonic fibroblasts by defined small-molecule compounds and successfully differentiated the CiPSCs into three-dimensional ROs, in which all major retinal cell types and retinal genes were in concordance with those in vivo . We transplanted retinal photoreceptors from ROs into the subretinal space of retinal degeneration mouse models and the cells could integrate into the host retina, establish synaptic connections, and significantly improve the visual functions of the murine models. This proof-of-concept study for the first time demonstrated that CiPSCs could differentiate into ROs with a full spectrum of retinal cell types, and provided new insights into chemical approach-based retinal regeneration for degenerative diseases.