Tracking chromatin structure changes by single-cell multi-epigenomics with RNA polymerase II binding profiles

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Transcription factor-bound chromatin structures regulate cell lineages in multicellular organisms. Single-cell epigenomics has the potential to reveal lineage determination on chromatin structure, but the methodology is still in development. Here, we develop single-cell combinatorial-indexing multi-target Chromatin Integration Labeling followed by sequencing (sci-mtChIL-seq) as a single-cell multi-epigenomics approach, which enables simultaneous single-cell analysis of both RNA polymerase II binding to chromatin and epigenomic factors such as transcription factors/histones. We apply sci-mtChIL-seq to analyze the binding dynamics of skeletal-muscle-specific transcription factor MyoD during mouse embryonic myogenesis. Based on RNA polymerase II-bound gene profiles, single-cells are efficiently classified into myogenic-clusters and ordered pseudotemporally. MyoD exhibits genome-wide binding in the muscle-progenitor-cell population, but in myocytes, this transitions toward enrichment in muscle-specific genes on active chromatin. Thus, sci-mtChIL-seq can be a powerful tool to analyze epigenomic dynamics in cell fate determination.

Article activity feed