DNA supercoiling-mediated G4/R-loop formation tunes transcription by controlling the access of RNA polymerase

Read the full article

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

RNA polymerase (RNAP) is a processive motor that modulates DNA supercoiling and reshapes DNA structures. The feedback loop between the DNA topology and transcription remains elusive. Here, we investigate the impact of potential G-quadruplex forming sequences (PQS) on transcription in response to DNA supercoiling. We find that supercoiled DNA increases transcription frequency 10-fold higher than relaxed DNA, which lead to an abrupt formation of G-quadruplex (G4) and R-loop structures. Moreover, the stable R-loop relieves topological strain, facilitated by G4 formation. The cooperative formation of G4/R-loop effectively alters the DNA topology around the promoter and suppresses transcriptional activity by impeding RNAP loading. These findings highlight negative supercoiling as a built-in spring that triggers a transcriptional burst followed by a rapid suppression upon G4/R-loop formation. This study sheds light on the intricate interplay between DNA topology and structural change in transcriptional regulation, with implications for understanding gene expression dynamics.

Article activity feed