Base-editing corrects metabolic abnormalities in a humanized mouse model for glycogen storage disease type-Ia

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Glycogen storage disease type-Ia patients, deficient in the G6PC1 gene encoding glucose-6-phosphatase-α, lack blood glucose control, resulting in life-threatening hypoglycemia. Here we show our humanized mouse model, huR83C, carrying the pathogenic G6PC1 -R83C variant displays the phenotype of glycogen storage disease type-Ia and dies prematurely. We evaluate the efficacy of BEAM-301, a formulation of lipid nanoparticles containing a newly-engineered adenine base editor, to correct the G6PC1 -R83C variant in huR83C mice and monitor phenotypic correction through one year. BEAM-301 can correct up to ~60% of the G6PC1 -R83C variant in liver cells, restores blood glucose control, improves metabolic abnormalities of the disease, and confers long-term survival to the mice. Interestingly, just ~10% base correction is therapeutic. The durable pharmacological efficacy of base editing in huR83C mice supports the development of BEAM-301 as a potential therapeutic for homozygous and compound heterozygous glycogen storage disease type-Ia patients carrying the G6PC1 -R83C variant.

Article activity feed