Neural Network-Driven Counter-Pulsation in Pulsatile Extracorporeal Membrane Oxygenator(ECMO): Enhancing Real-time Pulse Discrimination and Control Efficiency

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Implementing counter-pulsation (CP) control in pulsatile extracorporeal membrane oxygenator (p-ECMO) systems offers a refined approach to mitigate risks commonly associated with conventional ECMOs. To attain CP between the p-ECMO and heart, accurate detection of heartbeats within blood pressure (BP) waveform data becomes imperative, especially in situations where measuring electrocardiograms (ECGs) are difficult or impractical. In this study, a cumulative algorithm incorporating filter-type neural networks was developed to distinguish heartbeats from other pulse signals generated by the p-ECMO, reflections, or motion artifacts in the BP data. A control system was implemented using the cumulative algorithm that detects the heart rate (HR) and maintains a proper interval between the p-ECMO's pulses and heart beats, thereby achieving CP. To ensure precise circulatory support control, the p-ECMO setup was connected to a mock circulation system, with the human BP waveforms being replicated using a heart model. The algorithm could maintain CP perfectly when the HR remained constant; however, owing to a 0.48-s delay from the HR detection to CP control, the success rate of the CP control decreases when a sudden increase in the HR occurred. In fact, when the HR varied by ± 5 bpm every minute, the CP success rate dropped to 78.62%, however this was still higher compared to the 25.75% success rate achieved when no control was applied.

Article activity feed