Enhanced Osteogenesis of Mesenchymal Stem Cells Encapsulated in Injectable Microporous Hydrogel

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Delivery of therapeutic stem cells to treat bone tissue damage is a promising strategy that faces many hurdles to clinical translation. Among them is the design of a delivery vehicle which promotes desired cell behavior for new bone formation. In this work, we describe the use of an injectable microporous hydrogel, made of crosslinked gelatin microgels, for the encapsulation and delivery of human mesenchymal stem cells (MSCs) and compared it to a traditional nonporous injectable hydrogel. MSCs encapsulated in the microporous hydrogel showed rapid cell spreading with direct cell-cell connections whereas the MSCs in the nonporous hydrogel were entrapped by the surrounding polymer mesh and isolated from each other. Microporous hydrogel induced more robust osteogenic differentiation of MSCs and calcium mineral deposition than the nonporous hydrogel confirmed by alkaline phosphatase (ALP) assay and calcium assay. RNA-seq confirmed the upregulation of the genes and pathways that are associated with cell spreading and cell-cell connections, as well as the osteogenesis in the microporous hydrogel. These results demonstrate that the microgel-based injectable hydrogels can be useful tools for therapeutic cell delivery for bone tissue repair.

Article activity feed