Propionate production by Bacteroidia gut bacteria differs among species and is driven by substrate concentrations

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background Propionate is a food preservative and platform chemical, but no biological process competes with current petrochemical production routes yet. Although propionate production has been described for gut bacteria of the class Bacteroidia , which also carry great capacity for the degradation of plant polymers, knowledge on propionate yields and productivities across species is scarce. This study aims to compare propionate production within Bacteroidia and characterize good propionate producers among this group. Results We collected published information on propionate producing Bacteroidia , and selected ten species to be further examined. These species were grown under defined conditions to compare their product formation. While propionate, acetate, succinate, lactate and formate were produced, the product ratios varied greatly among the species. The two species with highest propionate yield, B. propionicifaciens , (0.39 g pro /g gluc ) and B. graminisolvens (0.25 g pro /g gluc ), were further examined. Product formation and growth behavior differed significantly during CO 2 -limited growth and in resting cells experiments, as only B. graminisolvens depended on external-added NaHCO 3 , while their genome sequences only revealed few differences in the major catabolic pathways. Carbon mass and electron balances in experiments with resting cells were closed under the assumption that the oxidative pentose pathway was utilized for glucose oxidation next to glycolysis in B. graminisolvens . Finally, during pH-controlled fed-batch cultivation B. propionicifaciens and B. graminisolvens grew up to cell densities (OD 600 ) of 8.1 and 9.8, and produced 119 mM and 33 mM of propionate from 130 mM and 105 mM glucose, respectively. A significant production of other acids, particularly lactate (25 mM), was observed in B. graminisolvens only. Conclusions We obtained the first broad overview and comparison of propionate production in Bacteroidia strains. A closer look at two species with comparably high propionate yields, showed significant differences in their physiology. Further studies may reveal the molecular basis for high propionate yields in Bacteroidia , paving the road towards their biotechnological application for conversion of biomass-derived sugars to propionate.

Article activity feed