Relationship between malaria vector survival, infectivity and insecticide treated net use in western Kenya

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Background: Much effort and resources have been invested to control malaria transmission in Sub-Saharan Africa, but it remains a major public health problem. For the disease to be transmitted from one person to another, the female Anopheles vector must survive 10-14 days following an infective bite for the Plasmodium gametocytes to develop into infectious sporozoites which can be transmitted to the next person during a bloodmeal. The goal of this investigation was to assess factors associated with wild-caught Anopheles survival and infection following host-seeking and indoor resting. Methods: The study was conducted in a longitudinal cohort of 75 households in 5 villages including a total of 755 household members in Bungoma County, Kenya. Monthly adult mosquito collection was conducted by attenuated aspiration in all the enrolled households, and the mosquitoes were reared in the insectary for 7 days. The daily mortality rate was determined through day 7, and all the mosquitoes were morphologically identified. Female Anopheline mosquitoes were dissected, and species-level members of the Anopheles gambiae complex were resolved by molecular methods. The abdomen for all samples were processed for P. falciparum detection by PCR. Results: Within a period of 25 months, the total number of culex and Anopheles mosquitoes collected indoors were 12,843 and 712 respectively. Anopheles gambiae and Anopheles funestus were the major vectors though their population varied between different villages. 61.2% (n=436/712) of the Anopheles species survived up to day 7 with the lowest mortality rate recorded on day 5 of captivity. The survival rate also varied between the different Anopheles species. 683 of 712 mosquito abdomens were tested for P. falciparum detection and 7.8% (53/683) tested positive for P. falciparum with An. funestus having a higher (10%) prevalence than An. gambaie s.s. (6.0%, p=0.095, Pearson Chi square test). The proportion of household members sleeping under a bednet the night before mosquito collection varied across time and village. An. funestus survival times were refractory to household ITN coverage and An. gambaie s.s . survival was reduced only under very high (>95%) ITN coverage. Conclusion: Despite ITN coverage, mosquitoes still acquired bloodmeals and P. falciparum infections. Survival differed across species and was inversely correlated with high ITN exposure in the household, but not oocyst development.

Article activity feed