Optimal development of apoptotic cells-mimicking Liposomes Targeting Macrophages

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Macrophages are multifunctional innate immune cells that play indispensable roles in homeostasis, tissue repair, and immune regulation. However, dysregulated activation of macrophages is implicated in the pathogenesis of various human disorders, making them a potential target for treatment. Through the expression of pattern recognition and scavenger receptors, macrophages exhibit selective uptake of pathogens and apoptotic cells. Consequently, the utilization of drug carriers that mimic pathogenic or apoptotic signals shows potential for targeted delivery to macrophages. In this study, a series of mannosylated or/and phosphatidylserine (PS) -presenting liposomes were developed to target macrophages via the design of experiment (DoE) strategy and the trial-and-error (TaE) approach. The optimal molar ratio for the liposome formulation was DOPC:DSPS:Chol:PEG-PE = 20:60:20:2 based on the results of cellular uptake and cytotoxicity evaluation on RAW 264.7 and THP-1 in vitro . Results from in vivo distribution showed that, in the DSS-induced colitis model and collagen II-induced rheumatoid arthritis model, PS-presenting liposomes (PS-Lipo) showed the highest accumulation in intestine and paws respectively, which holds promising potential for macrophage target therapy since macrophages are abundant at inflammatory sites and contribute to the progression of corresponding diseases. Organs such as the heart, liver, spleen, lung, and kidney did not exhibit histological alterations such as inflammation or necrosis when exposed to PC-presenting liposomes (PC-Lipo) or PS-Lipo. In addition, liposomes demonstrated hemobiocompatibility and no toxicity to liver or kidney for circulation and did not induce metabolic injury in the animals. Thus, the well-designed PS-Lipo demonstrated the most potential for macrophage target therapy.

Article activity feed