Genetic hallmarks and clinical implications of chromothripsis in childhood T-cell acute lymphoblastic leukemia

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Chromothripsis (cth) is a form of genomic instability leading to massive de novo structural chromosome rearrangements in a one-time catastrophic event. It can cause cancer-promoting alterations, such as loss of sequences for tumor-suppressor genes, formation of oncogenic fusions, and oncogene amplifications. We investigated the genetic background and clinical significance of cth in childhood T-cell acute lymphoblastic leukemia (T-ALL) patients. For this purpose, whole-genome copy number alterations were analyzed in 173 children with newly diagnosed T-ALL using high-density microarrays. Cth was identified in 10 T-ALL samples (5.78%). In six of them, cth occurred in a constitutional background of Nijmegen breakage syndrome (n = 5) or Li-Fraumeni syndrome (n = 1). Cth generated alterations, including deletions of CDKN2A/B (n = 4) and EZH2 (n = 4), amplifications of CDK6 (n = 2), and NUP214 :: ABL1 and TFG :: GPR128 fusions. Cth-positive leukemias exhibited deletions involving the tumor-suppressor genes RB1 (n = 3), TP53 (n = 1) and MED12 (n = 2). Cth-positive T-ALL patients had a lower probability of 5-year overall survival (OS) [0.56 vs. 0.81; hazard ratio (HR) = 4.14 (1.42–12.02) p  = 0.017] as did 5-year event-free survival [0.45 vs. 0.74; HR = 3.91 (1.52–10.08); p  = 0.012]. Chromothripsis is an infrequent genomic phenomenon in pediatric T-ALL but is significantly associated with cancer-predisposing syndromes and inferior prognosis.

Article activity feed