Immunogenicity and efficacy studies of Endo H in vivo deglycosylated Protective Antigen from Bacillus anthracis as a vaccine candidate against anthrax

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Protective antigen (PA) of B. anthracis is a key component of the anthrax toxin and have been demonstrated as a main immunogenic in the development of subunit vaccine against anthrax. However, the use of recombinant PA (rPA) as a vaccine candidate has faced challenges due to its inherent chemical instability, associated with the spontaneous deamidation of multiple asparagine (Asn) residues in PA molecule. We hypothesized that Endo H in vivo deglycosylated PA83 (dPA83(E)) may be an ideal candidate for PA83-based vaccine development because this technology could eliminate the deamidation of asparagine residues in the PA83 molecule and allow the production of PA83 protein in a deglycosylated, native-like form. In this study, we conducted immunogenicity and challenge efficacy studies of dPA83(E) antigen. We show that plant-produced dPA83(E) antigen demonstrated superior properties over PNGase F in vivo deglycosylated or glycosylated PA83 counterparts and elicited high toxin neutralizing antibody titers in mice and guinea pigs. Furthermore, a single administration of this vaccine candidate protected guinea pigs 100% from fatal B. anthracis infection. Taken together, our results demonstrate that Endo H in vivo enzymatic deglycosylated PA83 is a promising candidate for the development of cost-effective, safe, stable, and highly immunogenic vaccine against anthrax.

Article activity feed