Active avoidance recruits the anterior cingulate cortex regardless of social context in male and female rats.

Read the full article See related articles

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Actively avoiding danger is necessary for survival. Most research has focused on the behavioral and neurobiological processes when individuals avoid danger alone, under solitary conditions. Therefore, little is known about how social context affects active avoidance. Using a modified version of the platform-mediated avoidance task in rats, we investigated whether the presence of a social partner attenuates conditioned freezing and enhances avoidance learning compared to avoidance learned under solitary conditions. Rats spent a similar percentage of time avoiding during the tone under both conditions; however, rats trained under social conditions exhibited greater freezing during the tone as well as lower rates of darting and food seeking compared to solitary rats. Under solitary conditions, we observed higher levels of avoidance in females compared to males, which was not present in rats trained under social conditions. To gain greater mechanistic insight, we optogenetically inactivated glutamatergic projection neurons in the anterior cingulate cortex (ACC) following avoidance training. Photoinactivation of ACC neurons reduced expression of avoidance under social conditions both in the presence and absence of the partner. Under solitary conditions, photoinactivation of ACC delayed avoidance in males but blocked avoidance in females. Our findings suggest that avoidance is mediated by the ACC, regardless of social context, and may be dysfunctional in those suffering from trauma-related disorders. Furthermore, sex differences in prefrontal circuits mediating active avoidance warrant further investigation, given that females experience a higher risk of developing anxiety disorders.

Article activity feed