The synaptic architecture of layer 5 thick tufted excitatory neurons in mouse visual cortex

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Despite significant progress in characterizing neocortical cell types, a complete understanding of the synaptic connections of individual excitatory cells remains elusive. This study investigates the connectivity of mouse visual cortex thick tufted layer 5 pyramidal cells, also known as extratelencephalic neurons (L5-ETns), using a 1 mm 3 publicly available electron microscopy dataset. The analysis reveals that, in their immediate vicinity, L5-ETns primarily establish connections with a group of inhibitory cell types, which, in turn, specifically target the L5-ETns back. The most common excitatory targets of L5-ETns are layer 5 intertelencephalic neurons (L5-ITns) and layer 6 (L6) pyramidal cells, whereas synapses with other L5-ETns are less common. When L5-ETns extend their axons to other cortical regions, they tend to connect more with excitatory cells. Our results highlight a circuit motif where a subclass of excitatory cells forms a subcircuit with specific inhibitory cell types. This is achieved using a publicly available, automated approach for synapse recognition and automated cell typing, offering a framework for exploring the connectivity of other neuron types.

Article activity feed