<em>Endarachne binghamiae </em>Extract Alleviates Colitis by Suppressing NLRP3 Inflammasome Activation via Regulation of NOX–iNOS Crosstalk
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Inflammatory bowel disease (IBD) is triggered by genetic predisposition and chronic inflammation, with aberrant activation of the innate immune complex NLRP3 inflammasome playing a pivotal role in its pathogenesis. In this study, we investigated the effects of a hot water extract from the brown alga Endarachne binghamiae (EB-WE) on the inhibition of NLRP3 inflammasome activation, with a focus on its antioxidant properties, in various inflammation models. In bone marrow-derived macrophages (BMDMs), NLRP3 inflammasome activation was induced using LPS and ATP, and EB-WE pretreatment (100, 200 µg/mL) significantly reduced the secretion of IL-1β and IL-18. Confocal immunofluorescence analysis further confirmed that EB-WE suppressed the formation of the NLRP3-ASC/caspase-1 complex. Furthermore, the in vivo anti-IBD efficacy of EB-WE was assessed using a DSS-induced mouse model, in which colonic inflammation and NLRP3-mediated responses were prominent. Oral administration of EB-WE (2 or 5 mg/day) markedly ameliorated clinical symptoms, such as weight loss, diarrhea, and rectal bleeding, and significantly reduced the disease activity index (DAI). EB-WE also decreased serum pro-inflammatory cytokine levels and the expression of NLRP3 inflammasome-related molecules in colon tissue at both the gene and protein levels. In both BMDMs and the IBD mouse model, we further analyzed the upstream regulatory pathway involving NOX2 -iNOS. EB-WE efficiently inhibited the activation of the NOX-iNOS axis and NF-κB phosphorylation, thereby alleviating inflammasome activation associated with DSS-induced oxidative stress and neutrophil/macrophage infiltration. Collectively, these results demonstrate that EB-WE effectively suppresses the formation and activation of the NLRP3 inflammasome by modulating the NOX-iNOS axis and the NF-κB pathway, via antioxidant mechanisms. These findings suggest that EB-WE holds promise as a novel marine-derived natural therapeutic agent for the treatment of chronic inflammatory diseases.