Experimental Study on Deformation and Strength of Silt under Plane Strain Unloading Conditions
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
In geotechnical engineering, operations such as foundation pit excavation, slope cutting, and tunnel boring often involve lateral unloading under plane strain conditions. This unloading pattern exhibits significant differences from the traditional axisymmetric triaxial loading path. To investigate the mechanical behavior of silt under such conditions, a series of plane strain tests were conducted using a self-designed plane strain apparatus, focusing on both vertical loading (constant lateral stress) and lateral unloading (constant vertical stress) paths. The results indicate that the failure of soil during unloading can be identified as the stage where the vertical deformation rate first increases and then decreases, corresponding to a distinct inflection in the stress-strain curve. The internal friction angle remained essentially constant regardless of the stress path, dry density, or consolidation stress ratio, while cohesion was higher under loading than under unloading. Failure deviatoric stress increased linearly with vertical consolidation stress and was unaffected by the consolidation stress ratio. The classical limit equilibrium condition remains valid for unloading under both isotropic and anisotropic consolidation. These findings provide a practical criterion for failure detection and highlight the necessity of adopting plane strain parameters in the design of lateral unloading engineering works.