HDCGAN-Based UAV Remote Sensing Image Enhancement and Evaluation Method with WPID

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Remote sensing images acquired by UAVs under nighttime or low-light conditions suffer from insufficient illumination, leading to degraded image quality, detail loss, and noise, which restrict their application in public security and disaster emergency scenarios. Although existing machine learning-based enhancement methods can recover part of the missing information, they often cause color distortion and texture inconsistency. This study proposes an improved low-light image enhancement method based on a Weakly Paired Image Dataset (WPID), combining the Hierarchical Deep Convolutional Generative Adversarial Network (HDCGAN) with a low-rank image fusion strategy to enhance the quality of low-light UAV remote sensing images. First, YCbCr color channel separation is applied to preserve color information from visible images. Then, a Low-Rank Representation Fusion Network (LRRNet) is employed to perform structure-aware fusion between thermal infrared (TIR) and visible images, thereby enabling effective preservation of structural details and realistic color appearance. Furthermore, a weakly paired training mechanism is incorporated into HDCGAN to enhance detail restoration and structural fidelity. To achieve objective evaluation, a structural consistency assessment framework is constructed based on semantic segmentation results from the Segment Anything Model (SAM). Experimental results demonstrate that the proposed method outperforms state-of-the-art approaches in both visual quality and application-oriented evaluation metrics.

Article activity feed