Connect-4 AI: A Comprehensive Taxonomy and Critical Review of Methods and Metrics

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Connect-4, a solved two-player perfect-information game, offers a compact benchmark for artificial intelligence research due to its strategic depth and structural regularities, including board symmetries. This review presents a taxonomy-driven synthesis of Connect-4 AI research, encompassing game-theoretical foundations, classical search algorithms, reinforcement learning methods, explainable AI, and formal verification approaches. Analysis of search-, learning-, and hybrid-based methods reveals three dominant patterns: (i) classical search techniques prioritize determinism and efficiency but face scalability limits; (ii) reinforcement learning and neural approaches improve adaptability at the cost of interpretability and computational resources; and (iii) explainable and formally verified frameworks enhance transparency and reliability while imposing additional performance constraints. Recent advances in Connect-4 AI are driven less by raw performance gains than by strategic integration of efficiency, adaptability, interpretability, and robustness. Structuring the literature through a multidimensional taxonomy clarifies conceptual relationships, highlights underexplored research intersections, and points to emerging trends, including hybrid search–learning systems and explainable game intelligence. Overall, Connect-4 serves as a concise experimental domain for investigating fundamental challenges in game-playing AI, system design, and human–AI interaction.

Article activity feed