Major Low-Molecular-Weight Metabolites from Freshwater Aquatic Macrophytes: Ecological Aspects
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Freshwater macrophytes shape not only the morphological “architecture” of shallow-water ecosystems but also their chemical milieu via low-molecular-weight organic compounds (LMWOCs) that may regulate phytoplankton, periphyton, and the microbiome within the leaf/shoot diffusive boundary layer and the surrounding water column. In this study, GC–MS (gas chromatography–mass spectrometry) was used to identify major LMWOCs of the low-molecular-weight metabolome (LMWM) in 11 widely distributed macrophyte species (Myriophyllum spicatum L., Sparganium emersum Rehm., Sparganium gramineum Georgi, the hybrid Sparganium × foliosum A. A. Bobrov, Volkova, Mochalova et Chemeris, Persicaria amphibia (L.) Delarbre, Potamogeton perfoliatus L., Nuphar lutea (L.) Sibth. & Sm., Potamogeton pectinatus L., Potamogeton natans L., Lobelia dortmanna L., and Ceratophyllum demersum L.). Compounds contributing more than 1% to the total LMWOCs pool were considered major, increasing the ecological realism of interpretations by focusing on metabolites more likely to reach effective concentrations in the plant microenvironment. For interspecific comparisons, the maximum recorded values of relative abundance and concentrations were used to estimate species “potential”. In total, 137 major LMWOCs were detected (four remained unidentified), and their numbers varied markedly among taxa (from 11 in Nuphar lutea to 71 in P. perfoliatus). Similarity analyses (Jaccard, Sørensen–Czekanowski, Morisita–Horn) indicated that similarity based on compound lists and similarity based on dominance structure may diverge, reflecting differences between the “LMWOCs set” and the quantitative architecture of LMWOCs within the LMWM. Fatty acids formed the core of the major fraction in all species: they were among the top three compounds in all 11 macrophytes and ranked first or second in 10 of 11, highlighting the lipid module as a universal “structure–signaling–defense/allelopathy” hub in aquatic plants. Also, an analysis of the ecological-biochemical role of the main major LMWOCs in the studied aquatic macrophytes is presented. Overall, the data offer a comparable, ecologically oriented framework for interpreting chemical regulation of communities in macrophyte-dominated habitats and for selecting target compounds/species for subsequent bioassay and field studies.