Soft Optical Sensor for Embryo Quality Evaluation Based on Multi-Focal Image Fusion and RAG-Enhanced Vision Transformers

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Assessing human embryo quality is a critical step in in vitro fertilization (IVF), yet traditional manual grading remains subjective and physically limited by the shallow depth-of-field in conventional microscopy. This study develops a novel "soft optical sensor" architecture that transforms standard optical microscopy into an automated, high-precision instrument for embryo quality assessment. The proposed system integrates two key computational innovations: 1) a multi-focal image fusion module that reconstructs lost morphological details from Z-stack focal planes, effectively creating a 3D-aware representation from 2D inputs; and 2) a retrieval-augmented generation (RAG) framework coupled with a Swin Transformer to provide both high-accuracy classification and explainable clinical rationales. Validated on a large-scale clinical dataset of 102,308 images (prior to augmentation), the system achieves a diagnostic accuracy of 94.11%. This performance surpasses standard single-plane analysis methods by over 10%, demonstrating the critical importance of fusing multi-focal data. Furthermore, the RAG module successfully grounds model predictions in standard ESHRE consensus guidelines, generating natural language explanations. The results demonstrate that this soft sensor approach significantly reduces inter-observer variability and offers a viable pathway for fully automated, transparent embryo evaluation in clinical settings.

Article activity feed