DERA-Catalyzed Chemoenzymatic Access to Nucleobase-Substituted Candidate Statin Precursors

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Aldolases are powerful biocatalysts for the stereoselective formation of carbon–carbon bonds and are widely used in the synthesis of chiral intermediates for pharmaceutical applications. Among them, 2-deoxyribose-5-phosphate aldolase (DERA) has been extensively exploited for the preparation of the conserved side chain of statins. In this work, we report a novel chemoenzymatic approach for the synthesis of nucleobase-substituted lactol products as potential precursors of new statin analogues. A C49M variant of DERA from Pectobacterium atrosepticum (PaDERA C49M) was employed to catalyze sequential aldol additions using aldehyde-functionalized nucleobases as non-natural electrophilic substrates. The formation of nucleobase-containing lactols was confirmed, demonstrating for the first time the acceptance of nucleobase-derived aldehydes in DERA-catalyzed aldol reactions. This strategy provides access to structurally novel statin side-chain precursors and expands the synthetic potential of DERA toward the generation of new classes of bioactive compounds.

Article activity feed