Improving the Microbiological Safety of Raw Meat Through Visible Blue–Violet Light Irradiation
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
The interruption of primary conservation procedures during food handling and preparation represents a critical operational phase for food microbiological safety, especially in environments characterized by repeated manipulation and continuous human presence. This study investigates the application of visible blue–violet light irradiation as a non-thermal process to mitigate microbial proliferation during post-processing handling of raw meat. Raw beef hamburgers, selected as food model substrate, were subjected to irradiation using a blue–violet LED system operating in the 405–420 nm range and compared with non-irradiated controls under ambient and refrigerated conditions representative of real handling scenarios. Microbiological dynamics were evaluated through time-resolved enumeration of total aerobic mesophilic bacteria and Enterobacteriaceae, while concurrent measurements of moisture loss, texture, and color were performed to assess process-related effects on macroscopic product quality. Visible light irradiation significantly reduced the rate of microbial growth during handling, with irradiated samples consistently exhibiting lower microbial loads than controls, particularly under ambient conditions. Under refrigeration, irradiation contributed to stabilizing microbial levels over time, indicating a synergistic effect with low-temperature storage. From a process perspective, irradiation induced moderate and progressive changes in physicochemical attributes, primarily associated with surface dehydration and color variation, without abrupt quality degradation. These results demonstrate that visible blue–violet light irradiation can be integrated as a continuous, non-UV intervention to enhance the microbiological safety of raw meat during post-processing handling, supporting its potential role as an environmental control strategy in food-handling systems.