Concealed Face Analysis and Facial Reconstruction via Multi-Task Approach and Cross-Modal Distillation in Terahertz Imaging

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Terahertz (THz) sub-millimeter wave imaging offers unique capabilities for stand-off biometrics through concealment, yet they suffer from severe sparsity, low resolution, and high noise. To address these limitations, we introduce a novel unified Multi-Task Learning (MTL) network centered on a custom shared U-Net-like THz data encoder. This network is designed to simultaneously solve three distinct critical tasks on concealed THz facial data, given a limited dataset of approximately 1,400 THz facial images of 20 different identities. The tasks include concealed face verification, facial posture classification, and a generative reconstruction of unconcealed faces from concealed ones. While providing highly successful MTL results as a standalone solution on the very challenging dataset, we further studied the expansion of this architecture via a cross-modal teacher-student approach. During training, a privileged visible-spectrum teacher fuses limited visible features with THz data to guide the THz-only student. This distillation process yields a student network that relies solely on THz inputs at inference. The cross-modal trained student achieves better latent space in terms of inter-class separability compared to the single-modality baseline, but with reduced intra-class compactness, while maintaining a similar success in the task performances. Both THz-only and distilled models preserve high unconcealed face generative fidelity. The implementation code and trained weights are provided at https://github.com/noamberg/thz-face-distil.

Article activity feed