Emergence of Quantum Correlations as Macro-Time Correlations Derived from Underlying Micro-Time Correlations

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

This work introduces a rigorous mathematical approach for producing entangled quantum states from classical stochastic dynamics. We show that any density matrix ρAB describing a composite quantum system can be reconstructed from the correlations of two foundational stochastic processes, X(t) and Y(t), which model the random behavior of the individual subsystems. The framework employs a dual temporal scale—micro and macro time—where quantum correlations naturally arise as emergent macro-level correlations derived from fine-grained micro-level interactions. We formulate the Double Covariance Model (DCM), which captures the essential features of quantum mechanics by interpreting the quantum state as a fourth-order statistical structure within an underlying classical probabilistic model.

Article activity feed