Design of DPDK-SR-IOV Accelerated OTA Transmission Channel for High-Throughput Airborne Communication Links
Discuss this preprint
Start a discussion What are Sciety discussions?Listed in
This article is not in any list yet, why not save it to one of your lists.Abstract
Airborne terminals increasingly rely on OTA updates, yet their performance is limited by high satellite-link delays and the overhead of kernel-based packet handling. This study designs a DPDK–SR-IOV transmission path that moves packet processing to user space and assigns fixed queues to OTA traffic. Tests on an airborne terminal and a co-simulation platform show that the new path raises link utilization from 68.4% to 91.7%, reduces median delay by 36.2%, and lowers the 99th-percentile jitter by 47.9%. The retransmission rate stays below 0.4% across 1000 update cycles, indicating stable behavior under long runs. These findings show that kernel-bypass methods, when applied with controlled queue and CPU settings, can support high-throughput and low-jitter OTA updates in aircraft. The study also notes the need for broader testing across different hardware and mixed traffic conditions before deployment at fleet scale.