Quantum Information Copy-Time as a Microscopic Principle for Emergent Hydrodynamics, Inertial Spectral Mass, and a Predictive Higgs-Portal Dark-Matter Corridor

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

We present an audit-grade formulation of the Quantum Information Copy-Time (QICT) program as a micro–macro closure framework and as a quantitative pipeline for falsifiable predictions. The core observable is the operational copy time τcopy(ℓ;ε, δ⋆): the minimal time required for a calibrated local bias in a sender region to become statistically distinguishable in a receiver region at separation ℓ, under explicit signal-to-noise accuracy ε and disturbance budget δ⋆. Under transparent hypotheses—locality, sector ergodicity, and the existence of a quantitative diffusive hydrodynamic window—we derive a one-way lower bound τcopy ≳ ℓ2/D with a strict feasibility correction controlled by the inversion of the diffusive tail. We show how a measurable Spectral Diffusion Criterion (SDC) in the hydrodynamic sector converts microscopic unitary dynamics into an auditable transport closure. We connect this closure to two predictive targets: (i) an inertial spectral mass diagnostic defined from long-wavelength spectral flow, and (ii) a reproducible Higgs-portal dark-matter corridor in the scalarsinglet model, where the QICT calibration acts as a restrictive prior on the effective portal region. A complete reproduction package (code, data products, and figures) is provided; we emphasize which statements are definitions, which are assumptions, and which are falsifiable predictions.

Article activity feed