Investigation of High-Frequency Dynamics of Sea Surface Salinity in the Outer Shannon Estuary Using Numerical Model-Derived Data

Read the full article See related articles

Discuss this preprint

Start a discussion What are Sciety discussions?

Listed in

This article is not in any list yet, why not save it to one of your lists.
Log in to save this article

Abstract

Determining the most appropriate point for monitoring hourly sea surface salinity (SSS) in an outer estuary is a crucial requirement for operationalising a relatively proactive approach for monitoring and predicting upstream seawater intrusion (USI) successfully. However, our current knowledge of such high-frequency dynamics of SSS; and their spatial variability along the transect of the outer areas of European estuaries including Shannon Estuary, particularly when it comes to using relevant numerical model-derived (NM-D) data is still very limited. The study leveraged appropriate NM-D hourly SSS data to determine the daily, intraseasonal, and annual SSS variability at 4 different points in the outer part of Shannon Estuary; and to determine the most appropriate point for monitoring and predicting USI in the outer estuary. Descriptive statistics including measures of variability; and rigorous inferential statistics, pairwise Brown-Forsythe’s test were utilised for the study. Points A, B, C, and D show annual mean SSS (AMSSS) of 33.985, 33.881, 34.125, and 34.343; and annual mean CV (AMCV) of 0.086, 0.073, 0.094, and 0.106 % respectively. The lowest values exhibited by the point B in the results imply the highest level of annual freshwater availability (AFWA); and the most stable SSS on annual time scale. The Brown-Forsythe’s tests of the difference in the hourly SSS variability for points A vs B, A vs D, B vs C, B vs D, and C vs D show P-value of < 0.05, while A vs C shows P-value of > 0.05. This implies that the difference in the hourly SSS variability between the points of observation in each of the 5 pairs out of 6 is statistically significant. Instead of point A that is relatively close to the inner estuary, the results remarkably establish the point B as the most appropriate for monitoring and predicting USI in the outer estuary. The findings imply significant spatial and temporal dynamics, which underscore a complex hydrographic regime characterised by distinct geographic gradients and pronounced seasonal transitions in the outer parts of European estuaries.

Article activity feed